100道积分公式证明(71-100)

100道积分公式证明(71-100)

最新推荐文章于 2025-01-26 14:30:34 发布

原创

最新推荐文章于 2025-01-26 14:30:34 发布

·

1.2k 阅读

·

2

·

16

·

CC 4.0 BY-SA版权

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

文章标签:

#数学分析

本文详细介绍了100个积分公式中的71至100,涵盖了含有tanx, cotx, secx, cscx, ex, lnx等形式的积分计算。每个公式都附有完整的证明过程,例如∫1±tanx1dx=21(x±ln|cosx±sinx|)+C等。通过这些公式,读者可以深入理解积分计算的方法和技巧。"

108611947,8682238,"NodeJS开发环境配置与组件实战:nvm, node, npm, gulp

索引

含有 tan ⁡ x , cot ⁡ x , sec ⁡ x , csc ⁡ x \tan x,\cot x,\sec x,\csc x tanx,cotx,secx,cscx的形式

71. ∫ 1 1 ± tan ⁡ x d x = 1 2 ( x ± ln ⁡ ∣ cos ⁡ x ± sin ⁡ x ∣ ) + C \int{\frac{1}{1\pm \tan x}dx=\frac{1}{2}\left( x\pm \ln \left| \cos x\pm \sin x \right| \right)+C} ∫1±tanx1​dx=21​(x±ln∣cosx±sinx∣)+C

72. ∫ 1 1 ± cot ⁡ x d x = 1 2 ( x ∓ ln ⁡ ∣ sin ⁡ x ± cos ⁡ x ∣ ) + C \int_{

{}}^{

{}}{\frac{1}{1\pm \cot x}dx}=\frac{1}{2}\left( x\mp \ln \left| \sin x\pm \cos x \right| \right)+C ∫​1±cotx1​dx=21​(x∓ln∣sinx±cosx∣)+C

73. ∫ 1 1 ± sec ⁡ x d x = x + cot ⁡ x ∓ csc ⁡ x + C \int_{

{}}^{

{}}{\frac{1}{1\pm \sec x}dx}=x+\cot x\mp \csc x+C ∫​1±secx1​dx=x+cotx∓cscx+C

74. ∫ 1 1 ± csc ⁡ x d x = x − tan ⁡ x ± sec ⁡ x + C \int_{

{}}^{

{}}{\frac{1}{1\pm \csc x}dx}=x-\tan x\pm \sec x+C ∫​1±cscx1​dx=x−tanx±secx+C

75. ∫ arcsin ⁡ x d x = x arcsin ⁡ x + 1 − x 2 + C \int_{

{}}^{

{}}{\arcsin xdx}=x\arcsin x+\sqrt[{}]{1-{

{x}^{2}}}+C ∫​arcsinxdx=xarcsinx+1−x2

​+C

76. ∫ arccos ⁡ x d x = x arccos ⁡ x − 1 − x 2 + C \int_{

{}}^{

{}}{\arccos xdx}=x\arccos x-\sqrt[{}]{1-{

{x}^{2}}}+C ∫​arccosxdx=xarccosx−1−x2

​+C

77. ∫ arctan ⁡ x d x = x arctan ⁡ x − 1 2 ln ⁡ ( 1 + x 2 ) + C \int_{

{}}^{

{}}{\arctan xdx}=x\arctan x-\frac{1}{2}\ln \left( 1+{

{x}^{2}} \right)+C ∫​arctanxdx=xarctanx−21​ln(1+x2)+C

78. ∫ a r c c o t x d x = x ⋅ a r c c o t x + 1 2 ln ⁡ ( 1 + x 2 ) + C \int_{

{}}^{

{}}{arccot xdx}=x\centerdot arccotx+\frac{1}{2}\ln \left( 1+{

{x}^{2}} \right)+C ∫​arccotxdx=x⋅arccotx+21​ln(1+x2)+C

79. ∫ a r c s e c x d x = x ⋅ a r c s e c x − ln ⁡ ∣ x + x 2 − 1 ∣ + C \int_{

{}}^{

{}}{arcsec xdx}=x\centerdot arcsec x-\ln \left| x+\sqrt[{}]{

{

{x}^{2}}-1} \right|+C ∫​arcsecxdx=x⋅arcsecx−ln∣∣​x+x2−1

​∣∣​+C

80. ∫ a r c c s c x d x = x ⋅ a r c c s c x + ln ⁡ ∣ x + x 2 − 1 ∣ + C \int_{

{}}^{

{}}{arccsc xdx}=x\centerdot arccsc x+\ln \left| x+\sqrt[{}]{

{

{x}^{2}}-1} \right|+C ∫​arccscxdx=x⋅arccscx+ln∣∣​x+x2−1

​∣∣​+C

81. ∫ x arcsin ⁡ x d x = 1 4 [ x 1 − x 2 + ( 2 x 2 − 1 ) arcsin ⁡ x ] + C \int_{

{}}^{

{}}{x\arcsin xdx}=\frac{1}{4}\left[ x\sqrt[{}]{1-{

{x}^{2}}}+\left( 2{

{x}^{2}}-1 \right)\arcsin x \right]+C ∫​xarcsinxdx=41​[x1−x2

​+(2x2−1)arcsinx]+C

82. ∫ x arccos ⁡ x d x = 1 4 [ − x 1 − x 2 + ( 2 x 2 − 1 ) arccos ⁡ x ] + C \int_{

{}}^{

{}}{x\arccos xdx}=\frac{1}{4}\left[ -x\sqrt[{}]{1-{

{x}^{2}}}+\left( 2{

{x}^{2}}-1 \right)\arccos x \right]+C ∫​xarccosxdx=41​[−x1−x2

​+(2x2−1)arccosx]+C

83. ∫ x arctan ⁡ x d x = 1 2 [ ( 1 + x 2 ) arctan ⁡ x − x ] + C \int_{

{}}^{

{}}{x\arctan xdx}=\frac{1}{2}\left[ \left( 1+{

{x}^{2}} \right)\arctan x-x \right]+C ∫​xarctanxdx=21​[(1+x2)arctanx−x]+C

84. ∫ x ⋅ a r c c o t x d x = 1 2 [ ( 1 + x 2 ) a r c c o t x + x ] + C \int_{

{}}^{

{}}{x\centerdot arccot xdx}=\frac{1}{2}\left[ \left( 1+{

{x}^{2}} \right)arccot x+x \right]+C ∫​x⋅arccotxdx=21​[(1+x2)arccotx+x]+C

含有 e x {

{e}^{x}} ex的形式

85. ∫ a x d x = a x ln ⁡ a + C \int_{

{}}^{

{}}{

{

{a}^{x}}dx}=\frac{

{

{a}^{x}}}{\ln a}+C ∫​axdx=lnaax​+C

86. ∫ e x d x = e x + C \int_{

{}}^{

{}}{

{

{e}^{x}}dx}={

{e}^{x}}+C ∫​exdx=ex+C

87. ∫ x e x d x = ( x − 1 ) e x + C \int_{

{}}^{

{}}{x{

{e}^{x}}dx}=\left( x-1 \right){

{e}^{x}}+C ∫​xexdx=(x−1)ex+C

88. ∫ x n e x d x = x n e x − n ∫ x n − 1 e x d x \int_{

{}}^{

{}}{

{

{x}^{n}}{

{e}^{x}}dx}={

{x}^{n}}{

{e}^{x}}-n\int_{

{}}^{

{}}{

{

{x}^{n-1}}{

{e}^{x}}dx} ∫​xnexdx=xnex−n∫​xn−1exdx

89. ∫ 1 1 + e x d x = x − ln ⁡ ( 1 + e x ) + C \int_{

{}}^{

{}}{\frac{1}{1+{

{e}^{x}}}dx}=x-\ln \left( 1+{

{e}^{x}} \right)+C ∫​1+ex1​dx=x−ln(1+ex)+C

90. I 1 = ∫ e a x sin ⁡ b x d x = e a x a 2 + b 2 ( a sin ⁡ b x − b cos ⁡ b x ) + C {

{I}_{1}}=\int_{

{}}^{

{}}{

{

{e}^{ax}}\sin bxdx}=\frac{

{

{e}^{ax}}}{

{

{a}^{2}}+{

{b}^{2}}}\left( a\sin bx-b\cos bx \right)+C I1​=∫​eaxsinbxdx=a2+b2eax​(asinbx−bcosbx)+C

91. I 2 = ∫ e a x cos ⁡ b x d x = e a x a 2 + b 2 ( a cos ⁡ b x + b sin ⁡ b x ) + C {

{I}_{2}}=\int_{

{}}^{

{}}{

{

{e}^{ax}}\cos bxdx}=\frac{

{

{e}^{ax}}}{

{

{a}^{2}}+{

{b}^{2}}}\left( a\cos bx+b\sin bx \right)+C I2​=∫​eaxcosbxdx=a2+b2eax​(acosbx+bsinbx)+C

含有 ln ⁡ x \ln x lnx的形式

92. ∫ ln ⁡ x d x = x ( ln ⁡ x − 1 ) + C \int_{

{}}^{

{}}{\ln xdx}=x\left( \ln x-1 \right)+C ∫​lnxdx=x(lnx−1)+C

93. ∫ ln ⁡ x x d x = 2 x ln ⁡ x − 4 x + C \int_{

{}}^{

{}}{\frac{\ln x}{\sqrt[{}]{x}}dx}=2\sqrt[{}]{x}\ln x-4\sqrt[{}]{x}+C ∫​x

​lnx​dx=2x

​lnx−4x

​+C

94. ∫ x ln ⁡ x d x = x 2 4 ( 2 ln ⁡ x − 1 ) + C \int_{

{}}^{

{}}{x\ln xdx}=\frac{

{

{x}^{2}}}{4}\left( 2\ln x-1 \right)+C ∫​xlnxdx=4x2​(2lnx−1)+C

95. ∫ x n ln ⁡ x d x = x n + 1 ( n + 1 ) 2 [ ( n + 1 ) ln ⁡ x − 1 ] + C , n ≠ − 1 \int_{

{}}^{

{}}{

{

{x}^{n}}\ln xdx}=\frac{

{

{x}^{n+1}}}{

{

{\left( n+1 \right)}^{2}}}\left[ \left( n+1 \right)\ln x-1 \right]+C,\text{ }n\ne -1 ∫​xnlnxdx=(n+1)2xn+1​[(n+1)lnx−1]+C, n​=−1

96. ∫ ( ln ⁡ x ) 2 d x = x [ ( ln ⁡ x ) 2 − 2 ln ⁡ x + 2 ] + C \int_{

{}}^{

{}}{

{

{\left( \ln x \right)}^{2}}dx}=x\left[ {

{\left( \ln x \right)}^{2}}-2\ln x+2 \right]+C ∫​(lnx)2dx=x[(lnx)2−2lnx+2]+C

97. ∫ ( ln ⁡ x ) n d x = x ( ln ⁡ x ) n − n ∫ ( ln ⁡ x ) n − 1 d x \int_{

{}}^{

{}}{

{

{\left( \ln x \right)}^{n}}dx}=x{

{\left( \ln x \right)}^{n}}-n\int_{

{}}^{

{}}{

{

{\left( \ln x \right)}^{n-1}}dx} ∫​(lnx)ndx=x(lnx)n−n∫​(lnx)n−1dx

98. ∫ sin ⁡ ( ln ⁡ x ) d x = x 2 [ sin ⁡ ( ln ⁡ x ) − cos ⁡ ( ln ⁡ x ) ] + C \int_{

{}}^{

{}}{\sin \left( \ln x \right)dx}=\frac{x}{2}\left[ \sin \left( \ln x \right)-\cos \left( \ln x \right) \right]+C ∫​sin(lnx)dx=2x​[sin(lnx)−cos(lnx)]+C

99. ∫ cos ⁡ ( ln ⁡ x ) d x = x 2 [ sin ⁡ ( ln ⁡ x ) + cos ⁡ ( ln ⁡ x ) ] + C \int_{

{}}^{

{}}{\cos \left( \ln x \right)dx}=\frac{x}{2}\left[ \sin \left( \ln x \right)+\cos \left( \ln x \right) \right]+C ∫​cos(lnx)dx=2x​[sin(lnx)+cos(lnx)]+C

100. ∫ ln ⁡ ( x + 1 + x 2 ) d x = x ln ⁡ ( x + 1 + x 2 ) − 1 + x 2 + C \int_{

{}}^{

{}}{\ln \left( x+\sqrt[{}]{1+{

{x}^{2}}} \right)dx}=x\ln \left( x+\sqrt[{}]{1+{

{x}^{2}}} \right)-\sqrt[{}]{1+{

{x}^{2}}}+C ∫​ln(x+1+x2

​)dx=xln(x+1+x2

​)−1+x2

​+C

含有 tan ⁡ x , cot ⁡ x , sec ⁡ x , csc ⁡ x \tan x,\cot x,\sec x,\csc x tanx,cotx,secx,cscx的形式

71. ∫ 1 1 ± tan ⁡ x d x = 1 2 ( x ± ln ⁡ ∣ cos ⁡ x ± sin ⁡ x ∣ ) + C \int{\frac{1}{1\pm \tan x}dx=\frac{1}{2}\left( x\pm \ln \left| \cos x\pm \sin x \right| \right)+C} ∫1±tanx1​dx=21​(x±ln∣cosx±sinx∣)+C

证明: ∫ 1 1 ± tan ⁡ x d x t = tan ⁡ x ‾ ‾ ∫ 1 1 ± t d ( arctan ⁡ t ) = ∫ 1 1 ± t ⋅ 1 1 + t 2 d t = 1 2 ∫ ( 1 1 ± t + 1 ∓ t 1 + t 2 ) d t = 1 2 ∫ ( 1 1 ± t + 1 1 + t 2 ∓ t 1 + t 2 ) d t = 1 2 [ ± ln ⁡ ∣ 1 ± t ∣ + arctan ⁡ t ∓ 1 2 ln ⁡ ( 1 + t 2 ) ] + C = 1 2 [ ± ln ⁡ ∣ 1 ± tan ⁡ x ∣ + x ∓ ln ⁡ 1 + tan ⁡ 2 x ] + C = 1 2 ( x ± ln ⁡ ∣ 1 ± tan ⁡ x sec ⁡ x ∣ ) + C = 1 2 ( x ± ln ⁡ ∣ cos ⁡ x ± sin ⁡ x ∣ ) + C \begin{aligned} & \int{\frac{1}{1\pm \tan x}dx}\text{ }\underline{\underline{t=\tan x}}\text{ }\int{\frac{1}{1\pm t}d\left( \arctan t \right)} \\ & =\int{\frac{1}{1\pm t}\centerdot \frac{1}{1+{

{t}^{2}}}dt} \\ & =\frac{1}{2}\int{\left( \frac{1}{1\pm t}+\frac{1\mp t}{1+{

{t}^{2}}} \right)dt} \\ & =\frac{1}{2}\int{\left( \frac{1}{1\pm t}+\frac{1}{1+{

{t}^{2}}}\mp \frac{t}{1+{

{t}^{2}}} \right)}dt \\ & =\frac{1}{2}\left[ \pm \ln \left| 1\pm t \right|+\arctan t\mp \frac{1}{2}\ln \left( 1+{

{t}^{2}} \right) \right]+C \\ & =\frac{1}{2}\left[ \pm \ln \left| 1\pm \tan x \right|+x\mp \ln \sqrt[{}]{1+{

{\tan }^{2}}x} \right]+C \\ & =\frac{1}{2}\left( x\pm \ln \left| \frac{1\pm \tan x}{\sec x} \right| \right)+C \\ & =\frac{1}{2}\left( x\pm \ln \left| \cos x\pm \sin x \right| \right)+C \\ \end{aligned} ​∫1±tanx1​dx t=tanx​​ ∫1±t1​d(arctant)=∫1±t1​⋅1+t21​dt=21​∫(1±t1​+1+t21∓t​)dt=21​∫(1±t1​+1+t21​∓1+t2t​)dt=21​[±ln∣1±t∣+arctant∓21​ln(1+t2)]+C=21​[±ln∣1±tanx∣+x∓ln1+tan2x

​]+C=21​(x±ln∣∣∣∣​secx1±tanx​∣∣∣∣​)+C=21​(x±ln∣cosx±sinx∣)+C​

72. ∫ 1 1 ± cot ⁡ x d x = 1 2 ( x ∓ ln ⁡ ∣ sin ⁡ x ± cos ⁡ x ∣ ) + C \int_{

{}}^{

{}}{\frac{1}{1\pm \cot x}dx}=\frac{1}{2}\left( x\mp \ln \left| \sin x\pm \cos x \right| \right)+C ∫​1±cotx1​dx=21​(x∓ln∣sinx±cosx∣)+C

证明: ∫ 1 1 ± cot ⁡ x d x t = cot ⁡ x ‾ ‾ ∫ 1 1 ± t d ( a r c c o t t ) = − ∫ 1 1 ± t ⋅ 1 1 + t 2 d t = − 1 2 ∫ ( 1 1 ± t + 1 1 + t 2 ∓ t 1 + t 2 ) d t = − 1 2 [ ± ln ⁡ ∣ 1 ± t ∣ − a r c c o t t ∓ 1 2 ln ⁡ ( 1 + t 2 ) ] + C = − 1 2 [ ± ln ⁡ ∣ 1 ± cot ⁡ x ∣ − x ∓ ln ⁡ 1 + cot ⁡ 2 x ] + C = 1 2 [ x ± ln ⁡ 1 + cot ⁡ 2 x ∓ ln ⁡ ∣ 1 ± cot ⁡ x ∣ ] + C = 1 2 [ x ± ln ⁡ ∣ csc ⁡ x 1 ± cot ⁡ x ∣ ] + C = 1 2 [ x ∓ ln ⁡ ∣ sin ⁡ x ± cos ⁡ x ∣ ] + C \begin{aligned} & \int{\frac{1}{1\pm \cot x}dx\text{ }}\underline{\underline{t=\cot x}}\text{ }\int{\frac{1}{1\pm t}d\left( arccot t \right)} \\ & =-\int{\frac{1}{1\pm t}}\centerdot \frac{1}{1+{

{t}^{2}}}dt \\ & =-\frac{1}{2}\int{\left( \frac{1}{1\pm t}+\frac{1}{1+{

{t}^{2}}}\mp \frac{t}{1+{

{t}^{2}}} \right)dt} \\ & =-\frac{1}{2}\left[ \pm \ln \left| 1\pm t \right|-arccot t\mp \frac{1}{2}\ln \left( 1+{

{t}^{2}} \right) \right]+C \\ & =-\frac{1}{2}\left[ \pm \ln \left| 1\pm \cot x \right|-x\mp \ln \sqrt[{}]{1+{

{\cot }^{2}}x} \right]+C \\ & =\frac{1}{2}\left[ x\pm \ln \sqrt[{}]{1+{

{\cot }^{2}}x}\mp \ln \left| 1\pm \cot x \right| \right]+C \\ & =\frac{1}{2}\left[ x\pm \ln \left| \frac{\csc x}{1\pm \cot x} \right| \right]+C \\ & =\frac{1}{2}\left[ x\mp \ln \left| \sin x\pm \cos x \right| \right]+C \\ \end{aligned} ​∫1±cotx1​dx t=cotx​​ ∫1±t1​d(arccott)=−∫1±t1​⋅1+t21​dt=−21​∫(1±t1​+1+t21​∓1+t2t​)dt=−21​[±ln∣1±t∣−arccott∓21​ln(1+t2)]+C=−21​[±ln∣1±cotx∣−x∓ln1+cot2x

​]+C=21​[x±ln1+cot2x

​∓ln∣1±cotx∣]+C=21​[x±ln∣∣∣∣​1±cotxcscx​∣∣∣∣​]+C=21​[x∓ln∣sinx±cosx∣]+C​

73. ∫ 1 1 ± sec ⁡ x d x = x + cot ⁡ x ∓ csc ⁡ x + C \int_{

{}}^{

{}}{\frac{1}{1\pm \sec x}dx}=x+\cot x\mp \csc x+C ∫​1±secx1​dx=x+cotx∓cscx+C

证明: ∫ 1 1 ± sec ⁡ x d x = ∫ 1 1 ± 1 cos ⁡ x d x = ∫ cos ⁡ x cos ⁡ x ± 1 d x = ∫ d x ∓ ∫ 1 cos ⁡ x ± 1 d x = x ± ∫ cos ⁡ x ∓ 1 sin ⁡ 2 x d x = x ± ∫ ( csc ⁡ x cot ⁡ x ∓ csc ⁡ 2 x ) d x = x ± ∫ d ( − csc ⁡ x ± cot ⁡ x ) = x ± ( − csc ⁡ x ± cot ⁡ x ) + C = x + cot ⁡ x ∓ csc ⁡ x + C \begin{aligned} & \int_{

{}}^{

{}}{\frac{1}{1\pm \sec x}dx}=\int_{

{}}^{

{}}{\frac{1}{1\pm \frac{1}{\cos x}}dx} \\ & =\int_{

{}}^{

{}}{\frac{\cos x}{\cos x\pm 1}dx} \\ & =\int_{

{}}^{

{}}{dx}\mp \int_{

{}}^{

{}}{\frac{1}{\cos x\pm 1}dx} \\ & =x\pm \int_{

{}}^{

{}}{\frac{\cos x\mp 1}{

{

{\sin }^{2}}x}dx} \\ & =x\pm \int_{

{}}^{

{}}{\left( \csc x\cot x\mp {

{\csc }^{2}}x \right)dx} \\ & =x\pm \int_{

{}}^{

{}}{d\left( -\csc x\pm \cot x \right)} \\ & =x\pm \left( -\csc x\pm \cot x \right)+C \\ & =x+\cot x\mp \csc x+C \\ \end{aligned} ​∫​1±secx1​dx=∫​1±cosx1​1​dx=∫​cosx±1cosx​dx=∫​dx∓∫​cosx±11​dx=x±∫​sin2xcosx∓1​dx=x±∫​(cscxcotx∓csc2x)dx=x±∫​d(−cscx±cotx)=x±(−cscx±cotx)+C=x+cotx∓cscx+C​

74. ∫ 1 1 ± csc ⁡ x d x = x − tan ⁡ x ± sec ⁡ x + C \int_{

{}}^{

{}}{\frac{1}{1\pm \csc x}dx}=x-\tan x\pm \sec x+C ∫​1±cscx1​dx=x−tanx±secx+C

证明: ∫ 1 1 ± csc ⁡ x d x = ∫ 1 1 ± 1 sin ⁡ x d x = ∫ sin ⁡ x sin ⁡ x ± 1 d x = ∫ d x ± ∫ sin ⁡ x ∓ 1 cos ⁡ 2 x d x = x ± ∫ ( sec ⁡ x tan ⁡ x ∓ sec ⁡ 2 x ) d x = x ± ∫ d ( sec ⁡ x ∓ tan ⁡ x ) = x ± ( sec ⁡ x ∓ tan ⁡ x ) + C = x − tan ⁡ x ± sec ⁡ x + C \begin{aligned} & \int_{

{}}^{

{}}{\frac{1}{1\pm \csc x}dx}=\int_{

{}}^{

{}}{\frac{1}{1\pm \frac{1}{\sin x}}dx} \\ & =\int_{

{}}^{

{}}{\frac{\sin x}{\sin x\pm 1}dx} \\ & =\int_{

{}}^{

{}}{dx}\pm \int_{

{}}^{

{}}{\frac{\sin x\mp 1}{

{

{\cos }^{2}}x}dx} \\ & =x\pm \int_{

{}}^{

{}}{\left( \sec x\tan x\mp {

{\sec }^{2}}x \right)dx} \\ & =x\pm \int_{

{}}^{

{}}{d\left( \sec x\mp \tan x \right)} \\ & =x\pm \left( \sec x\mp \tan x \right)+C \\ & =x-\tan x\pm \sec x+C \\ \end{aligned} ​∫​1±cscx1​dx=∫​1±sinx1​1​dx=∫​sinx±1sinx​dx=∫​dx±∫​cos2xsinx∓1​dx=x±∫​(secxtanx∓sec2x)dx=x±∫​d(secx∓tanx)=x±(secx∓tanx)+C=x−tanx±secx+C​

75. ∫ arcsin ⁡ x d x = x arcsin ⁡ x + 1 − x 2 + C \int_{

{}}^{

{}}{\arcsin xdx}=x\arcsin x+\sqrt[{}]{1-{

{x}^{2}}}+C ∫​arcsinxdx=xarcsinx+1−x2

​+C

证明: ∫ arcsin ⁡ x d x = x arcsin ⁡ x − ∫ x d ( arcsin ⁡ x ) = x arcsin ⁡ x − ∫ x 1 − x 2 d x = x arcsin ⁡ x + ∫ 1 2 1 − x 2 d ( 1 − x 2 ) = x arcsin ⁡ x + 1 − x 2 + C \begin{aligned} & \int_{

{}}^{

{}}{\arcsin xdx}=x\arcsin x-\int_{

{}}^{

{}}{xd\left( \arcsin x \right)} \\ & =x\arcsin x-\int_{

{}}^{

{}}{\frac{x}{\sqrt[{}]{1-{

{x}^{2}}}}dx} \\ & =x\arcsin x+\int_{

{}}^{

{}}{\frac{1}{2\sqrt[{}]{1-{

{x}^{2}}}}d\left( 1-{

{x}^{2}} \right)} \\ & =x\arcsin x+\sqrt[{}]{1-{

{x}^{2}}}+C \\ \end{aligned} ​∫​arcsinxdx=xarcsinx−∫​xd(arcsinx)=xarcsinx−∫​1−x2

​x​dx=xarcsinx+∫​21−x2

​1​d(1−x2)=xarcsinx+1−x2

​+C​

76. ∫ arccos ⁡ x d x = x arccos ⁡ x − 1 − x 2 + C \int_{

{}}^{

{}}{\arccos xdx}=x\arccos x-\sqrt[{}]{1-{

{x}^{2}}}+C ∫​arccosxdx=xarccosx−1−x2

​+C

证明: ∫ arccos ⁡ x d x = x arccos ⁡ x − ∫ x d ( arccos ⁡ x ) = x arccos ⁡ x + ∫ x 1 − x 2 d x = x arccos ⁡ x − ∫ 1 2 1 − x 2 d ( 1 − x 2 ) = x arccos ⁡ x − 1 − x 2 + C \begin{aligned} & \int_{

{}}^{

{}}{\arccos xdx}=x\arccos x-\int_{

{}}^{

{}}{xd\left( \arccos x \right)} \\ & =x\arccos x+\int_{

{}}^{

{}}{\frac{x}{\sqrt[{}]{1-{

{x}^{2}}}}dx} \\ & =x\arccos x-\int_{

{}}^{

{}}{\frac{1}{2\sqrt[{}]{1-{

{x}^{2}}}}d\left( 1-{

{x}^{2}} \right)} \\ & =x\arccos x-\sqrt[{}]{1-{

{x}^{2}}}+C \\ \end{aligned} ​∫​arccosxdx=xarccosx−∫​xd(arccosx)=xarccosx+∫​1−x2

​x​dx=xarccosx−∫​21−x2

​1​d(1−x2)=xarccosx−1−x2

​+C​

77. ∫ arctan ⁡ x d x = x arctan ⁡ x − 1 2 ln ⁡ ( 1 + x 2 ) + C \int_{

{}}^{

{}}{\arctan xdx}=x\arctan x-\frac{1}{2}\ln \left( 1+{

{x}^{2}} \right)+C ∫​arctanxdx=xarctanx−21​ln(1+x2)+C

证明: ∫ arctan ⁡ x d x = x arctan ⁡ x − ∫ x d ( arctan ⁡ x ) = x arctan ⁡ x − ∫ x 1 + x 2 d x = x arctan ⁡ x − 1 2 ∫ 1 1 + x 2 d ( 1 + x 2 ) = x arctan ⁡ x − 1 2 ln ⁡ ( 1 + x 2 ) + C \begin{aligned} & \int_{

{}}^{

{}}{\arctan xdx}=x\arctan x-\int_{

{}}^{

{}}{xd\left( \arctan x \right)} \\ & =x\arctan x-\int_{

{}}^{

{}}{\frac{x}{1+{

{x}^{2}}}dx} \\ & =x\arctan x-\frac{1}{2}\int_{

{}}^{

{}}{\frac{1}{1+{

{x}^{2}}}d\left( 1+{

{x}^{2}} \right)} \\ & =x\arctan x-\frac{1}{2}\ln \left( 1+{

{x}^{2}} \right)+C \\ \end{aligned} ​∫​arctanxdx=xarctanx−∫​

Copyright © 2088 世界杯预选赛中国_1994年世界杯冠军是谁 - nywk120.com All Rights Reserved.
友情链接
Top